Python Matplotlib - Bar Plot Adding Error Bars


Python Matplotlib - Bar Plot Adding Error Bars

Error bars are a useful tool in bar plots to visualize the variability or uncertainty in data. Python's Matplotlib library provides a way to add error bars to bar plots. In this tutorial, you will learn how to include and customize error bars in your bar charts.


Adding Error Bars to a Bar Plot

You can add error bars to a bar plot using the yerr parameter in the plt.bar() function. This parameter specifies the error values for each bar.

Example 1: Basic Bar Plot with Error Bars

import matplotlib.pyplot as plt
import numpy as np

# Data for the bar plot
categories = ['Category A', 'Category B', 'Category C', 'Category D']
values = [20, 35, 30, 35]
errors = [2, 3, 4, 1]  # Error values

# Create the bar plot with error bars
plt.bar(categories, values, yerr=errors, capsize=5, color='skyblue', edgecolor='black')

# Add labels and title
plt.xlabel('Categories')
plt.ylabel('Values')
plt.title('Bar Plot with Error Bars')

# Show the plot
plt.show()

Explanation

  1. yerr specifies the error values for each bar.
  2. capsize controls the size of the caps at the ends of the error bars.
  3. The color and edgecolor parameters style the bars.
Matplotlib - Basic Bar Plot with Error Bars

Customizing Error Bars

Matplotlib allows you to customize the appearance of error bars for better visualization.

Example 2: Custom Error Bar Style

import matplotlib.pyplot as plt
import numpy as np

# Data for the bar plot
categories = ['Category A', 'Category B', 'Category C', 'Category D']
values = [20, 35, 30, 35]
errors = [2, 3, 4, 1]  # Error values

# Create the bar plot with customized error bars
plt.bar(categories, values, yerr=errors, capsize=10, color='orange', edgecolor='black',
        error_kw={'ecolor': 'red', 'elinewidth': 2, 'alpha': 0.7})

# Add labels and title
plt.xlabel('Categories')
plt.ylabel('Values')
plt.title('Bar Plot with Customized Error Bars')

# Show the plot
plt.show()

Explanation

  1. The error_kw parameter customizes the error bars, including:
    • ecolor: Sets the color of the error bars.
    • elinewidth: Adjusts the thickness of the error bars.
    • alpha: Adds transparency to the error bars.
  2. capsize is increased for better visibility of the caps.
Matplotlib - Customized Error Bars

Bar Plot with Asymmetric Error Bars

In some cases, you may want to use different error values for the upper and lower bounds of the bars. Matplotlib supports this using yerr with a tuple or array.

Example 3: Asymmetric Error Bars

import matplotlib.pyplot as plt
import numpy as np

# Data for the bar plot
categories = ['Category A', 'Category B', 'Category C', 'Category D']
values = [20, 35, 30, 35]
errors = [[2, 1, 3, 2], [3, 4, 2, 1]]  # Asymmetric error values (lower, upper)

# Create the bar plot with asymmetric error bars
plt.bar(categories, values, yerr=errors, capsize=5, color='green', edgecolor='black')

# Add labels and title
plt.xlabel('Categories')
plt.ylabel('Values')
plt.title('Bar Plot with Asymmetric Error Bars')

# Show the plot
plt.show()

Explanation

  1. The yerr parameter is specified as a list of two arrays: one for lower errors and one for upper errors.
  2. Error bars are drawn asymmetrically based on the provided values.
Matplotlib - Asymmetric Error Bars

Summary

In this tutorial, we covered:

  • Adding error bars to bar plots using the yerr parameter.
  • Customizing error bars with parameters like ecolor and elinewidth.
  • Using asymmetric error bars to represent different upper and lower bounds.

By incorporating error bars, you can effectively represent data variability and uncertainty in your bar plots.




Python Libraries