How to Add or Append Row to Pandas DataFrame? Examples
Pandas DataFrame - Add or Append Row
To append or add a row to DataFrame, create the new row as Series and use DataFrame.append() method.
In this tutorial, we shall learn how to append a row to an existing DataFrame, with the help of illustrative example programs.
Syntax of append()
The syntax of DataFrame.append() function to append a row new_row
to the DataFrame mydataframe
is
mydataframe.append(new_row, ignore_index=True)
where the resulting DataFrame contains new_row added to mydataframe.
append() is immutable. It does not change the original DataFrame, but returns a new DataFrame created from the given DataFrame with the row appended. In order to update the original DataFrame, assign the DataFrame returned by the append() function back to the original DataFrame.
mydataframe = mydataframe.append(new_row, ignore_index=True)
Examples
1. Add Row to DataFrame
In this example, we will create a DataFrame and append a new row to this DataFrame. The new row is initialized as a Python Dictionary and append() function is used to append the row to the dataframe.
When you are adding a Python Dictionary to append(), make sure that you pass ignore_index=True
.
The append() method returns the dataframe with the newly added row.
Python Program
import pandas as pd
data = {'name': ['Somu', 'Kiku', 'Amol', 'Lini'],
'physics': [68, 74, 77, 78],
'chemistry': [84, 56, 73, 69],
'algebra': [78, 88, 82, 87]}
#create dataframe
df_marks = pd.DataFrame(data)
print('Original DataFrame\n------------------')
print(df_marks)
new_row = {'name':'Geo', 'physics':87, 'chemistry':92, 'algebra':97}
#append row to the dataframe
df_marks = df_marks.append(new_row, ignore_index=True)
print('\n\nNew row added to DataFrame\n--------------------------')
print(df_marks)
Explanation
- The program imports the
pandas
library, which is widely used for data manipulation and analysis. - A dictionary named
data
is defined, with keys ('name'
,'physics'
,'chemistry'
, and'algebra'
) representing the column names and corresponding lists of values for each column. - A DataFrame named
df_marks
is created using thepd.DataFrame()
function, which organizes the data in a tabular format with rows and columns. - The original DataFrame is printed, displaying all rows and columns.
- A new dictionary named
new_row
is defined, containing the values for a new row ('name'
: 'Geo','physics'
: 87,'chemistry'
: 92,'algebra'
: 97). - The
append()
method is used to addnew_row
to the DataFrame. The argumentignore_index=True
ensures that the index is reset, reflecting the addition of the new row. - The updated DataFrame, now including the newly added row, is printed to display its revised structure.
Output
Run the above Python program, and you shall see the original dataframe, and the dataframe appended with the new row.
Original DataFrame
------------------
name physics chemistry algebra
0 Somu 68 84 78
1 Kiku 74 56 88
2 Amol 77 73 82
3 Lini 78 69 87
New row added to DataFrame
--------------------------
name physics chemistry algebra
0 Somu 68 84 78
1 Kiku 74 56 88
2 Amol 77 73 82
3 Lini 78 69 87
4 Geo 87 92 97
2. Add Row to Pandas DataFrame (ignoreIndex = False)
If you do not provide the parameter ignoreIndex=False
, you will get TypeError.
In the following example, we will try to append a row to DataFrame with the parameter ignoreIndex=False
.
Python Program
import pandas as pd
data = {'name': ['Amol', 'Lini'],
'physics': [77, 78],
'chemistry': [73, 85]}
#create dataframe
df_marks = pd.DataFrame(data)
print('Original DataFrame\n------------------')
print(df_marks)
new_row = {'name':'Geo', 'physics':87, 'chemistry':92}
#append row to the dataframe
df_marks = df_marks.append(new_row, ignore_index=False)
print('\n\nNew row added to DataFrame\n--------------------------')
print(df_marks)
Output
Original DataFrame
------------------
name physics chemistry
0 Amol 77 73
1 Lini 78 85
Traceback (most recent call last):
File "example1.py", line 14, in <module>
df_marks = df_marks.append(new_row, ignore_index=False)
File "C:\Users\PythonExamples\AppData\Local\Programs\Python\Python37\lib\site-packages\pandas\core\frame.py", line 6658, in append
raise TypeError('Can only append a Series if ignore_index=True'
TypeError: Can only append a Series if ignore_index=True or if the Series has a name
As the error message says, we need to either provide the parameter ignore_index=True
or append the row, that is Series with a name.
We have already seen in Example 1, how to add row to the DataFrame with ignore_index=True
. Now we will see how to add a row with ignore_index=False
.
Python Program
import pandas as pd
data = {'name': ['Amol', 'Lini'],
'physics': [77, 78],
'chemistry': [73, 85]}
#create dataframe
df_marks = pd.DataFrame(data)
print('Original DataFrame\n------------------')
print(df_marks)
new_row = pd.Series(data={'name':'Geo', 'physics':87, 'chemistry':92}, name='x')
#append row to the dataframe
df_marks = df_marks.append(new_row, ignore_index=False)
print('\n\nNew row added to DataFrame\n--------------------------')
print(df_marks)
We have named the Series as data
. Therefore ignore_index=False
does not return a TypeError and the row is appended to the DataFrame.
Output
Original DataFrame
------------------
name physics chemistry
0 Amol 77 73
1 Lini 78 85
New row added to DataFrame
--------------------------
name physics chemistry
0 Amol 77 73
1 Lini 78 85
x Geo 87 92
Summary
In this Pandas Tutorial, we have used append() function to add a new row to Pandas DataFrame.